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ABSTRACT

In this paper we zIllew_25glected issues of simultaneous statis

tical inference and statistical power in survey research applications of

the general linear model, and we find that classical hypothesis testing

as it is currently applied, is inadequate for the purposes of social

research. The intelligent use of statistical inference demands control

over the overall level of Type I error and knowledge of the magnitude

of effects one is likely to detect. We suggest techniques that can be

used to routinely incOrporate considerations of simultaneous inference

and power into the statistical analysis of survey data. Several examples

of applications of these techniques are presented.
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I. Introduction

Our purpose in this paper is to provide for a more informed use

of statistical inference in tests of hypotheses in'survey applications

of the general linear model (GLM). This model, like any model, is com-

prised of a set of assumptions that permit the derivation of certain

general principles. The assumptions of the GLM are of particular utility

to the survey researcher in that they permit one to draw inferences

about the structure of relationships among variables to larger popula

tions on the basis of sample survey data. In this piper we suggest

that wfien conducting multiple statistical tests of hypotheses within

the GLM framework, our results will be more meaningful if we know the

overall probability of rejecting a false null hypothesis and the prob-

ability of finding statistically significant results when substantively

meaningful effects exist.

By following the current practice for doing multiple tests for

hypotheses on parameters Of linear models, researchers are inadequately

controlling the probability of rejecting a true null hypothesis --the

probability of making a Type I error. Inference considerations in

situations where multiple tests of hypotheses are conducted are qualita-

tively different from procedures described for single hypothesis testing

in most texts. Procedures currently employed yield Type I error rates

that can be considerably lower than the true probability of rejecting

a true null hypothesis when a nuMber of hypotheses are tested. Scientific

norms of parsimony that dictate researchers be conservative in their claims

of the empirical effects of social variables are clearly violated as
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social researchers .systematically underestimate the likelihood that

Type I errors are .occurring in their analyses. Drawing on a considerable

body of literature on simultaneous inference in the aim, we argue that

analysts_of survey data must reconceptualize their approach to statisti-

cal inference. We discuss several techniques for treating the simulta-

neous inference problem in the GLM, and present, with examples, procedures

for applying these techniques to survey data.

In curreniresearch practice little concern has been expressed for

the power of am statistical tests. Analysts of large sample survey data

often dismiss power considerations with the assertion that their tests

have "more than enough power"--even trivial effects yield statistically

significant results (Blau and Duncan, 1967, pp. 17-18). We present ex-

mnples below to demonstrate that for many GLM hypotheses, whether or not

the tests are characterized by 'Nriore than enough power" can be quite

problematic. Indeed, most researchers are confronted with a situation

Where they must take.as given two important determinants of the power of

statistical tests, sample size and the configuration of independent vari-.

abIes.
1 Thus, we argue that it is imperative that the analyst compute

the magnitudes of the effects that are likely to be detectable in a given

set of data. As we shall demonstrate below, the power of au4 tests can

be routinely calculated.

The imPortance of the consideration of issues in simultaneous

statistical inference and power for the informed use of statistical

tests of hypotheses reqUires that the survey researcher be aware of

major issues and procedures pertaining to these two areas. In this paper,
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we provide a critical examination of issues and procedures in simul-

taneous statistical inference and statistical power as they apply to

the research. We begin our exegesis with a brief review of assump-

tions of the GLM and common hypothesis tests in survey research applica-

tions. Drawing on the body of literature on simultaneous inference in

the GLM, we argue that analysts of survey data must reconceptualize their

approach to statistical inference. We discuss several techniques for

-treating the simultaneous inference problem in the GLM, and present,

with examples, procedures for applying these techniques to survey data.

Following the treatment of simultaneous inference we examine factors

that influence the ability to detect substantively meaningful effects--

statistical power. A procedure for estimating the power of statistical

tests is discussed and illustrative example6 of the influence of various

factors on statistical power are presented. We conclude with some sug-

gestions for improving the use of statistical inference in making meaning-

ful decisions about the merits of the hypotheses being tested.

II. The General Linear Model: Assumptions and

Common Hypothesis Tests

A. GLM Assumptions

We shall concern ourselves with tests of hypotheses about the param-

eters of the GLM, the classical model stated in matrix terms as follows:

(1) 01Xl)

X

(NxIC) (Xxl) (Nxl)
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(2) E (c) = 0

(3) E (ce) = a2I

(4) c N (0, a2I)

(5) X is fixed (nonstochastic) and of full column rank.2

While the theory of statistical inference for the GLM was originally

developed for the above model, assumption (5), fixed X, is clearly unten-

able in the application of the model to survey data. It requires that

the sampling desigr include a priori stratification on all independent

variables, i.e. ai iori specification of cell sizes for each combina-

tion of the levels of the independent variables. A modification of the

above model allows for the typical survey design of multivariate sampling

from the joint distribution of 2:and X. We replace (2) through (5).

above with the following assumptions:

(2a) E (cIX) = 0

(3a) E (WIX) = a2I

(4a) clX Vo,a2I).

Thus it is required that the classical assumption holds conditionally on

X. The disturbance must be mean independent Of the independent variables
3

and be conditionally independently normally distributed with zero mean

and constant variance. While this more appropriate conditional GLM

presents no differences in the treatment of Type I error, it does com-

plicate the treatment of power. While our results with respect to Type I

error hold unconditionally, the procedures for power calculations present-

ed in this paper give results conditional upon the values of X realized in

a particular sample (Graybill, 1961, pp. 204-205; Sampson, 1974). The
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conditional power calculations presented herein must be considered upper

bounds upon the unconditional power of the tests.
4

B. Hypothesis Testing in Survey Applications of the GLM

In Table 1 1.4,2 present ln outline of the types of CIA hypotheses

commonly tested in survey applications and the statistical tests applied

to those hypotheses. Tn (1) we have the test of an individual coefficient,

81. The t-test is just bi - ei divided by the standard error of bi, the

usual t-ratio computed in regression programs. The one degree of freedom

F-test is merely the square of the t-test.

Hypothesis (2) is the test that a subset of J coefficients are joint-

*

ly equal to a set of J specified values. When 8
(2)

is specified to be a
--

vector of zeros and J = K - 1, it is the common "overall" F-test of no

regression. When J < K -.1, and
*

(2)
is a vector of zeros, it is the

"increment to R2 F-test for a subset of variables.

Hypotheses (1) and (2) comprise the majority of hypotheses tested

in survey applications of the GIM. Although seldom conducted in non-

experimental applications of the GLM, a researcher may want to test

whether linear combinations of the coefficients are equal to some specified

zero or nonzero values. Paralleling hypotheses (1) and (2), one can test

a single linear combination with a t-test
5
or one degree of freedom F-test,

or jointly test J linearly independent linear conbinitions of coefficients.

Indeed, hypotheses (1) and (2) are special cases of (3) and (4).

Finally, each of the F-tests for the hypotheses can be considered

"increment to R2 tests with J numerator and N - K denominator degrees

of freedom as given in the equation for the u statistic found in Table 1.
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Simultaneous Statistical Inference

In most applications of the GLM in survey research more than one of

a single type of the above delineated hypotheses is tested or more than

one type of hypottlsis is tnsted. Frequently some set of interaction

effects are tested jointly and main effects are tested individually.

When the effects of a categorical and one or more continuous independent

variables are analyzed, often a joint test of the effects of the set of

dummy variables representing the categorical variable and one or more in-

dividual tests of the coefficients for the continuous variables are perform-

ed. In applications of the GLM that involve a single equation, the per-

formance of multiple t-tests on individual slope coefficients is a uni-

versal practice. Finally, it is becoming standard practice to do multiple

tests on all possible slope coefficients in simple recursive structural

equation models.

We have briefly noted above the researcher who performs such multiple

hypotheses tests-is in a qualitatively different inference situation--that

of simultaneous statistical
inference--than the researcher who performs

only a single hypothesis test. In this section we shall consider both

how the single and multiple hypotheses cases differ from the standpoint

of inference, and techniques of statistical inference that are appropriate

to the mulitple hypotheses test situation. First we shall examine these

two issues in general and then we shall consider them as they apply to

the standard tests conducted within survey research applications of the GLM.

11



8

A. General Issues in Simultaneous Statistical Inference

An understanding of the basic difference between the single hypothesis

and multiple hypotheses cases can beat be achieved by first recalling the

definition of Type I error in statistical inference. Type / error is

the error of falsely rejecting a true null hypothesis. For the researcher

who performs only a single null hypothesis test, this definition presents

no problem. The probability.that he will falsrly reject this single null

hypothesis is the probability of Type I error in this case. The research-

er can straightforwardly proceed by following the suggested standard pro-

cedure of specifying a level, 1 - a, of protection against a Type I error,

and then proceed to perform his statistical test accordingly. Now consid-

er what happens if this same researcher sometime in his life performs

additional tests of null hypotheses according to the suggested standard

procedure. That is, he specifies a level .. a of desired protection

against a Type I error and conducts each of his statistical tests at

this level.

If we reflect now on the definition of Type I error we realize that

for this researcher the actual level of protection against making a Type

I error in the multiple null hypotheses case is less than 1 - a. Thus,

this researcher is overestimating the protection he has against falsely

rejecting a true null hypothesis. The problem with employing the conven-

tional procedure for making tests of multiple null hypotheses arises be-

cause ihe probability of making a Type I error in this case is the prob-

ability of falsely rejecting any one of the individual null hypotheses--

which equals the probability of making a Typel error for the first null

hypothesis, or for the second null hypothesis, or for the nth null

1 2
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hypothesis, or for any combination of the n hypotheses. Except in the

case of total dependency among the null hypotheses tested, this prob-

ability is greeter than the a level under which each of the null hypoth-

eses were tested.

Essentially the solution to this problem is provided by the research-

er's decision concerning which null hypotheses will be grouped together

for the purpose of considering Type I.error--generally referred to as the

specification of the unit of error rate. Given this decision, the research-

er can proceed to do each of the tests of individual null hypotheses in

such a fashion that the desired level of protection against making a Type

I error for the group of null hypotheses has been provided.

Two extreme groupings of null hypotheses can be identified. First,

one could consider as a group all the null hypotheses tests that a

researcher or a group of researchers will do in his or their lifetime.

By grouping in this manner the researcher would be provided with pro-

tection at a specified level against ever falsely rejecting a true null

hypothesis. Second, one could consider each individual null hypothesis

test as a group for inference purposes. This grouping is generally called

a per-comparison unit of error rate and effectively removes one from the

simultaneous inference situation. The first extreme grouping essentially

has been rejected in discussions of appropriate units of error rate for

research, and a general agreement exists that the upr'r hound for grouping

purposes is provided by the group of null hypotheses tested by one research-

er in one study. However, there exists no consensus on what is the most

,appropriate unit of error rate below this upper bound (Ryan, 1959, 1962;

Wilson, 1962; Miller, 1966).

13



10

The problem addressed by simultaneous statistical inference tech-

niques is that of how to perform tests of individual hypotheses such

that one has protection at a specified level againstmaking a Type I

error for a group of hypotheses. Numerous techniques of simultaneous

statistical inference have been designed to address this problem (Miller,

1966; Kirk, 1968); many of which have been developed for specific types

of tests within the GLK framework.
6 However, two techniques, the

Bonferroni and.Scheffg, are of wide generality.

The Bonferroni technique is based on the Bonferroni inequality,

which states that

(6) a < E a
9G S

i

where aG
equals the significance level for a group of null hypotheses,

equals the significance level for each individual null hypothesis
a
Si

in the group, and N equals the total number of null hypotheses in the group.

The Sonferroni technique can be applied to virtually all situations of

multiple hypotheses tests where one has prior knowledge of how many tests

are to be conducted.

The Scheffg method, in the GLM framework, provides a means of con-

trolling error rate for tests of all possible linear combinations of

the.least squares
estimates of the slope coefficients. The Scheffg tech-

nique is based on the'common assumptions
(distributional and otherwise)

of the GLM. Its generality is due to the fact that it allows the research-

er to perform an infinite number of tests of linear combinations of

coefficients while
protecting against a

specified value of Type I error

for the group.

14
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B. Simultaneous Statistical Inference in CLM Applications in Survey Research

The first question that must be addressed is, "Does one need to be

concerned with issues of simultaneous ifiference?" The implicit answer

given to this question in survey research applications of the CLM to

date has been, "no." Virtually all analyses of survey data conducted

within the CLM framework have implicitly employed a per-comparison error

rate. In general, analyses of multiple null hypotheses based on survey

data have been performed in the following manner: A value of Type I

error is specified and this value is used in tests of each individual

null hypothesis. No consideration is given to error rate for any group

of hypotheses.

There are compelling reasons for believing that this implicit an-

gwer is insufficient. The first reason is that the implicit answer is

usually based on a lack of knowledge of the issues in simultaneous infer-

ence. Basic textbook treatments of statistical inference, from which

most social researchers' knowledge of this subject is obtained, generally

ignore simultaneous statistical inference. Consequently, many social

researchers are unaware or vaguely aware that a problem may exist in

doing multiple tests of null hypotheses.

Beyond this lack of knoldedge there are important substantive reasons

for considering simultaneous inference. Perhaps the most important of

these is the fact that social researchers do not limit their concern to

the determination of whether or not a single variable has a statistically

significant direct effect on a given dependent variable, but extend

their interest to the determination of whether or not a set of independent

15
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variables affects a given dependent variable. Such analyses are fre-

quently done i n the context of a causal model of a process that deter-

mines variation in a dependent variable. This is particularly the case

in analyses done within the recursive structural equation framework.

Here the researcher frequently begins with a specified causal ordering

among a set of variables and a set of null hypotheses about the rela-

tionships among this set of variables. It can be argued that since

the researcher is interested in finding the correct model of a process

in a population, the set of iitultiple null hypotheses used to find this

model should be tested simultaneously. That is, the researcher-should

provide protection against a specified level, ar, of finding an incorrect

model of a process; since falsely rejecting any of the multiple null

hypotheses is in effect finding an incorrect model of the process.

Another reason for being concerned with units of error rate other

than the per-comparison unit is the scientific dictum of conservatism'

and parsimony. It is generally thought that the acceptance of a false

null hypothesis is more desirable scientifically than the rejection of

a true null hypothesis. Such a principle, it is proposed, keeps the

scientific literature from becoming unduly confused by false research

findings and keeps scientific theories from becoming overly camplex.

Since the employment of a unit for error rate other than the per-

comparison unit makes it more difficult to capitalize on chance in con-

..

ducting tests of multiple null hypotheses, the scientific dictums of con-

servatism and parsimony argue for the use of simultaneous inference tech-

niques.

1 6
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A final reason is specific to the practice of "data snooliineror

"data dredging." Roth terms are used in reference to the practice of

doing same previously unspecified number of tests within a body of

data in an attempt to discover relationships among the set of variables

analyzed. Such a practice is undertaken either because the researcher

has no prior hypotheses about the relationships among a set of variables

or wishes to supplement an analysis of prior hypotheses. In this situa-

tion it is argued that since one approaches an analysis with an unspec-

ified number of null hypotheses to be tested--the number tested could

be one, several, or ali possible tests--the scientifically honest pro-

cedure is to use a simultaneous inference technique that provides pro-

tection against a level of Type I error for all possible tests.

Given that one has concluded that it is desirable to employ simul-

taneous statistical inference techniques, the next question that must

be addressed is "What unit of error rate should be employed?" The most

straightforward answer that can be given to this question is simply that

there are no hard and.fast rules. The unit of error rate used is depen-

dent upon the researcher's judgement of what unit best suits the research

proposes. We can make suggestions, however, about what seems to be

appropriate units for certain applications of the common hypotheses tests

delineated in Table 1. We wIll consider three such applications: (1)

the prediction situation, (2) the use of "theory trimming" in simple

recursive structural equation models, and (3) the use of various hypothesis

tests in post hoc analyses of linear models.

1 7
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Consider first the situation in which the researcher is simply

interested in determining which variables among a set of independent

variables have significant, direct effects on a dependent variable.

The intent here is usually that of discovering what variables are im-

portant determinants of variation in some dependent variable.. The

usual procedure in this case is tbe performance of an individual test

of the hypothesis that-0i equals zero for each independent variable.

We suggest that all of the individual hypothesis tests of the 08 be

grouped together for purposes of considering error rate. Such a group.;.-

ing seems appropriate since the focus of this type of research is on

the correct prediction of values of a given dependent variable. By

grouping in this fashion, the researcher is protected at the level

1 - a
G

against making a Type I error in predictiftg values of a given

dependent variable.

Secondly, consider the "theory trimming" strategy (Reise, 1969)

often employed in the analysis of sithple recursive structural equation

models. A common procedure in social research is the specifidation of

a recursive causal ordering among a set of variables and the employment

of multiple t-tests of individual 0 coefficients (or their standardized

counterparts) to determine which effects among those posaible in a recur-

sive causal ordering are significant.
7 The intent here is Usually that

of determining the most plausible model of same process in a popUlation.

We propose that all of the null hypotheses tested in the "theory trimming"

process be considered as a group for error rate purposes. Because in

this case, the researcher is interested in finding the correct model of

1 8
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a process in a population, grouping in this fashion is appropriate.

Since falsely rejecting any one of the null hypotheses about the indi-

vidual 0 coefficients means that the researcher has found an incorrect

model of the process, protection should be provided against falsely re-

jecting any one of the null hypotheses. By treating all of the null

hypotheses as a unit for purposes of considering Type I error the re-

searcher does so at ele level 1 - aG .

Finally, consider the use of the common hypotheses tests in the

post hoc case. Frequently the results of one's analysis do not conform

to the original expectations. The attainment of unexpected resultsina:f

at least partially be attributed to initial assumptions not holding.

For example, one may have assumed that the relationships among a set of

variables are linear and additive when in fact they are nonlinear or not

additive. Many of these assumptions are testable with the data at hand

and in such a situation the researcher may wish to perform a number of

hypothesis tests to determine if the unexpected results are attributable

to the failure of meeting one's assumptions.

Additionally, the results of one's analysis may suggest further

tests that may be interesting to the researcher or the researcher may

simply wish to snoop around in the data in the hope of discovering an

interesting result. In all these post hoc analyses the researcher is

"data dredging." For the reasons of scientific honesty elaborated above

we suggest that the researcher employ as the unit of error rate all

possible tests of the 0 coefficients and employ the Scheffg techniques

1 9
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After one has determined the unit of error rate to be employed, a

simultaneous inference technique must then be chosen. The Bonferroni and

Scheffg teChniques can both be applied to all of the common hypotheses

tests performed on slope coefficients listed in Table 1.
8

The two

techniques do differ, however, in the advantages each presents in

specific situations. Two criteria are of importance in weighing the

relative advantages of each technique: (1) the ability the techniques

present to detect specific alternative hypotheses (i.e. statistical

power), and (2) their applicability to a priori versus post hoc statis-

tical tests. We shall first consider the mechanics of applying each

technique and then weighing their relative advantages in terms of these

two criteria.

C. The Bonferroni Technique

To provide protection at level 1 - aG for a group of null hypotheses

via the Bonferroni technique one first determines the total number of

individual null hypotheses to be tested, m. Then, one divides aG by m

and tests each individual null hypothesis with a significance level

equal to aG/m. For example, if one wishes to test whether a subset of

coefficients are jointly equal to zero and to test whether four addition-

al coefficients are individually equal to zero, with a group probability

error rate of 05.one would simply conduct the tests corresponding to

hypotheses (1) and (2) in Table 1, each with as equal to .01.

20
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D. The Scheffg Technique

The Ficheffg technique is applied to the various F-tests specified

in Table 1. It requires that one first perform a test of the joint

null hypothesis that all of the coefficients from which subsequent tests

of the nature of those in Table 1 will be conducted, with 1 - aG equal

to the desired level of protection against a Type I error. If this test

is nonsignificant one stops here and performs no further tests, since

tests of any linear combination of these 0 coefficients (this includes

as well hypotheses (1) and (2) in Table 1) will prove nonsignificant.

on the other hand, one can reject this joint null hypothesis, then

one carries out any and all of the tests in Table 1 by using as the

critical value of the test statistic for all individual null hypotheses

tests, the quantity

JFCt G(J, N - k) ,

where J equals the degrees of freedom from the joint null hypothesis

test that all coefficients equal to zero. For example, if the researcher

wishes to conduct individual tests of three different linear combinations

of four 0 coefficients (tests of the form of hypothesis (3) in Table 1)

one would use the.specified test in Table 1 with the critical 3;alue of

the test statistic equal to

4F
a
G (4, N - K)

21
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E. Bonferroni and Scheffg Procedures: Some Comparisons

Note first that the Bonferroni and Scheffg procedures are con-

servative. In general the actual value of the group error rate will

be less than that desired. Hence, one will have greater protectior

against a Type I error than initially specified. The Bonferroni pro-

cedure, as we had mentioned, is based on the Bonferroni inequality and

the fact that it produces only approximations to the actual group error

rate that can be readily seen. The Scheffg technique provides an exact

value of the group error rate for all possible linear combinations.

However, it is only a finite subset of these linear combinations that

is ever tested, and consequently it, like the Bonferroni technique, is

conservative.

The fact that the Scheff4 procedure provides an error rate for all

possible linear combinations, while the Bonferroni procedure is based oh

a finite number of tests provides some insight into the ability of each

to allow the rejection of individual null hypotheses. Intuitively, it
_--

appears that the Scheffg technique will be less powerful than the Bonferroni

technique because the former is based on an infinite number of tests

while the latter is not. In fact the Scheffg technique 0111 always be

less powerful for the rejection of individual null hypotheses when m,

the actual number of tests made, is less than or equal to J, the degrees

of freedom for the numerator of the F statistic. On the other hand, when

m is considerably bigger than J, the inexactitude of the Bonferroni pro-

cedure is such that the Scheffe procedure provides greater power for the

22
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rejection of individual null hypotheses (Miller, 1966, pp. 62-63;

Dunn, 1959). Rather than rely on the somewhat sparse literature

comparing the power of simultaneous inference techniques, the re-

searcher can apply both the Bonferroni and Scheffg techniques (or

others) and use the one that provides greatest power. Doing so is

fully permissible in the a priori case since the choice of technique

is independent of the data collected.

The Scheffg procedure presents an advantage over the Bonferroni

technique in post hoc, tests. For reasons of scientific honesty elab-

orated earlier, the Scheffg technique is more suitable for searching

one's data in an attempt to discover the nature of the relationships

among a set of variables.

We turn now to an examination of issues concerning the power of

statistical tests of GIN hypotheses, Before doing so, an important im-

plication of the conservative nature of the Bonferroni and Scheffg pro-

cedures for the estimation of power of IN hypothesis tests must be

noted. As we shall discuss below, the smaller the a level fot a hypo-

thesis test, the less power of that test (holding other factors constant).

As a consequence, the ease of applicability of the two procedures is

purchased at the cost of an overestimate
of.the power of a test (where

the degree of overestimate depends on the size of the discrepency be-

tween the conservative a and the tine a). This fact, tbgether with the

conditional nature of the power calculations noted above, makes it imper-

ative that we stress that the power calculations to be presented below

should be taken as absolute minimum Type II error rates.
9

23
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IV Power

Once appropriate statistical tests and Type I error rate have been

selected, to calculate power, the probability of rejecting a false null

hypothesis for any test, we must determine the probability that the test

statistic for the hypothesis exceeds the critical value when a given al-

ternative hypothesis is true. The GLM test statistic u is distributed

as a noncentral F when an alternative hypothesis Is true, with J and '

Nr K degrees of freedom and noncentrality parameter 62. The distribu-

tion has the property that the probability of the statistic u exceeding

a given critical value (and consequently power) increases sonotonically

with 62: The noncentrality parameter is a function of (among other things)

the degree to which the null hypothesis is false. For the most general

GLM test, the test of a set of J linear combinations of coefficients is

(7) Ho: AO im AO* and,

the noncentrality parameter, 62 is

(AO - AOst)1 (L(VX) -1 A')-1 (AO - AO*)

(8) 6
2

a
yex

Figure 1 presents a plot of power as a function of 8
2 for various

combinations of Type I error rates and numerator degrees of freedom,

and arbitrarily large denominator degrees of freedom.
10

It can be seen

that for a given a and 6
2
, power decreases with numerator degrees of

freedom J, and that for given J, power is monotonically related to the

2 4
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probability of a Type I error. All three of these relationships are

important when we consider the implications of simultaneous inference

for power.

In Table 2 we present alternative expressions for the noncentrality

parameters for the test of an individual coefficient and the joint test

of J < K - 1) coefficients. The noncentrality parameters are pre-
-

sented as functions of the original GLK parameters and standardized

parameters.
11 Looking first at the test of the k

th individual coefficient

we see immediately that 82 (and therefore power) increases with the de-

gree $k departs from its hypothesized value et. Noting that x M* x is

just the sum of squared residuals for the regression of the k
th

independent.

variable on the remaining K - 2 independent.variables, we conclude also

that power increases with the orthogonality of the k
th independent vari-

able to the others. We see this again in the (1 - R
2 ) term in the
xk.Xst

standardized expression, and note also that, of course, power increases

with sample size. From the standardized expression we also see that,.

power increases with the proportion of variance explained (i.e. as

a
2

/a
2
decreases). None of these results should be surprising. The

y.x y

ability to reject a false null hypothesis increases with the degree to

which it is false, the degree to which the effect being tested is non-

redundant with the effects of other parameters, the amount oUdata avail-
.

able, and the overall power of the linear model.

The 6
2 parameter for the joint teht of J (J < K -1) coefficients

can be interpreted as a multivariate extension of the single coefficient
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case. Both X' M12 -22.1
X and R are measures of the degree to which the

-2 --

covariation among the J variables with coefficients being tested is

orthogonal to the covariation among the remaining K - J - 1 independent

variables, and B2 - 11 is the vector discrepancy between the true values

of the J coefficients and their hypothesized values. Indeed for all

GLM tests we can conceptualize the noncentrality parameter as a scaler

measure of the degree to which the null hypothesis is false, weighted:

by the amount of independent information available.

Given a substantively meaningful alternative hypothesis one would

wish to be able to detect, the configuration of independent variables

in the model, and the completeness of the model as measured by the prof-

portion of variance explained, it is a trivial matter to program a com-

puter to compute 6
2

as expressed in equation (8) for any general linear

hypothesis and any specified alternative. Thus given 6
2

and n, one has

enough information to determine the power of the test from Pearson and

Bartley charts (Scheffe, 1959: 438-445; Kirk, 1968: 520-547). We now

present examples of calculations of power as functions of n and the

degree to which the null hypothesis is false.

A. Determining the Power of GLK Tests: Same Examples

Is it indeed the case that survey researchers are typically confronted

with testing situations where they have "too much" power, i.e. is it

usually true that trivial departures form the null hypothesis result in

statistically significant tests? It is impossible to answer this question

Antr%o rwminr nm1nn1s01-4nna flu, enleillntinna
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presented below show that having too much power is by no means generally

the case. 'Furthermore, we argue that if a researcher is to report the

results of statistical tests, it is always imperative that the magnitude

of the effects, trivial or nontrivial, which are likely to be detected

also be presented.

Consider the following linear model:

(9) Yi Rl R2x1.2 R3x1.3 R4x1.4 R57i5 ReCi6 ci '

Where:

y = Income,

X
2
= Education,

X
3

= Occupation,

X
4
= Parental income,

X
5
= Father's occupation,

X
6
= Father's income.

When models of the socioeconomic achievement process such as equation

(9) are estimated, the researcher is usually interested in hypotheses

about all five coefficients (excluding the intercept), 02, . . 06. To

maintain an overall protection of 1 - a = .95 against Type I error we

can conduct simple t-tests on the five coefficients at the .nl level

(Bonferroni), or compare the usual 1 degree of freedom F=tests (the

.os

square of the t-test) to the 51
5,N K

critical value (Scheffg).

Let us consider the power of the test of the education coefficient,

H
0

: 0
2
= 0, when the true net return to a year of education is $150,

H
1

: $
2
= 150. Given this null hypothesis and a meaningful alternative
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typothesis, how large of a sample size is required to have a reasonable

likelihood of detecting an education effect of $150 a year in samples

drawn from the United States labor force? We know'from the expression

for the noncentrality parameter in Tale 2 that the power of the test

also depends on the variation in and covariation among the independent

variables, and the proportion of variation explained in the model. Assum-

ing that the five social variables explain about 15 percent of the income

variation in the United States labor force, and using published correla-

tions and variances of the five variables from a sample of Wisconsin high=

school graduates (Sewell and Hauser, 1972), we can calculate the noncen-

trality parameter as a function of sample size. From Pearson-Hartley

charts we can then plot power as a function of sample size.
12

/n Figure 2 we present the plot of power as a function of sample

size for a Type I error rate of .05 for: (1) the Bonferroni test,

(2) the Scheffg projection, and (3) a simple t-test not controlling

for overall Type I error rate (the noncentrality parameter is identical

for all three tests). We see, as noted abbve, that the Bonferroni test

is slightly more powerful than the Scheffg-projection, and that compared

to the simple t-test one must pay a price in terms of power in order to

control for overall error rate. Thus, if one is going to test the net

education effect with a Bonferroni test, a sample size of at least 2200

observations is required to achieve a power of .90.

Does the above result imply that national samples of more than

10,000 observations, tests on coefficients f the income determination

model will have "more than enough power"? This is only true for the
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specific null and alternative hypotheses specified above. Consider a

different hypothesis on the same education coefficient. Suppose that

from a census of the population we know that.the net effect of a year

of education in 1960 was $150. In 1975 we are to collect a sample in

order to detect changes in 02 through 05 and we want to be able to de-

tect a change in 02 of $30 a year in either direction. In this case we

are testing a nonzero null hypothesis, Ho : 02 = 01 = 150, against a

nondirectional alternative: H
1

:1 0
2
- 0* = 30. Using the same

2

information as in the previous example, we have determined power as a

function of sample size for this test and present the plot in Figure 3.

In order to detect a change of $30 a year with a Bonferroni test with a

power of .90, a sample of about 60,000 observations would be required.
13

The power of joint tests on coefficients is generally greater for a

given sample size. Figures 4 and 5 present the power of joint tests on

02, 03 and 134 (where we have.assumed that.no hypotheses concerning 05

and 0
6
are to be treated). Figure 4 presents the power of the test of

the joint null hypothesis that 0
2'

0
3

and 0
4

are all zero versus the

alternative that they each have standardized effects of .10. Figure 5

presents the power to detect a joint standardized change of .02 in each

coefficient. Once agaig, the sample size needed to detect the joint

change with a power of .90 is relatively large, nearly 9,000 for a = .01.

We conclude from the above examples that it is by no means guaranteed

that tests based on large sample surveys-have "more than enough" power.

While it is true that as our theories become more powerful and our models

become more precise representatives of empirical processes, the increase



P
o
w
e
r

1
P
(
I
I
)

S
i
m
p
l
e
 
t
-
t
e
s
t
 
(
m
.
0
5
,
 
3
1
)

/
'
.

.0
0

on
o"

=
N

M
M

E
M

O

B
o
n
f
e
r
s
o
n
i
 
(
a
G
=
.
0
5
,
 
a
.
(
1
,
 
3
=
1
)

S
c
h
e
f
f

(
o
e
.
0
5
,
 
a
.
0
5
,

3
'
E
5
)

R
o

:
$

1
5
n
 
(
s
/
y
R
)

1
R
1

:
$
2

1
5
0

3
0

(
E

.
1
0
)

=
 
.
0
2
)

1

1
0
,
0
0
0

2
0
,
0
0
0

3
0
,
0
0
0

4
0
,
0
0
0

s
n
o
w

6
0
o
0
0

7
0
,
0
0
0

m
o
n
o

9
0
,
0
0
0

F
i
g
u
r
e
 
3
:

I
n
c
o
m
e
 
e
q
u
a
t
i
o
n
-
-
T
o
y
e
r
 
a
s
 
a

f
u
n
c
t
i
o
n
 
o
f
 
s
a
m
p
l
e
 
s
i
z
e
 
f
o
r

t
h
e
 
t
e
s
t
 
o
n
 
a
n
 
i
n
d
i
v
i
d
u
a
l

c
o
e
f
f
i
c
i
e
n
t



a
=
.
0
5

as
.

M
M

.

c
t
=
,
.
0
1

H
o
:

c
2
)

n
o
\

3

0
4

n)

H
p

(
:
2
)

$
4

(

1
5
0
 
s
/
Y
R

.-
11

.1
5
W
E
I

.
0
8
2
5
 
V
S

.1
0

.1
6

2
0
0

3
0
0

50
0

K
u
r
e
 
A
:

I
n
c
o
m
e
 
e
q
u
a
t
i
o
n
P
o
w
e
r
 
a
s
 
a
 
f
u
n
c
t
i
o
n
 
o
f
 
s
a
m
p
l
e
 
s
i
z
e
 
f
o
r
 
a
 
j
o
i
n
t
 
F
-
t
e
s
t
 
o
n
 
t
h
r
e
e

c
o
e
f
f
i
c
i
e
n
t
s



.
 
9

.
 
8

.
7 .
6 .
5 .
4

P
o
w
e
r

1
 
-
P
(
I
I
)

c
t
.
0
5

i
/

1
/

.
1

H
o

:

m
a

(
p
)3

P
t
,

n
,
 
i
n
o
w
s

i
i
i
r

1
2

3
4

5
6

7
R

l
n

1
1

1
2

1
3

l
i
t
.

F
i
g
u
r
e
 
5
:

I
n
c
o
m
e
 
e
q
u
a
t
i
o
n
P
o
w
e
r
 
a
s
 
a
 
f
u
n
c
t
i
o
n
 
o
f
 
s
a
m
r
l
e
 
s
i
z
e

f
o
r
 
a
 
i
o
i
n
t
 
r
-
t
e
s
t

o
n
 
t
h
r
e
e
 
c
o
e
f
f
i
c
i
e
n
t
s



32

in the proportion of variance we can explain will unilaterally increase

the power of our statistical tests, we will also become interested in

detecting increasingly smaller effects. Indeed, in situations where we

are interested in detecting change through replications of surveys, it

is likely-that we will wish to detect relatively small effects with little

Or no increase in the proportion of variance explained in the replication.

Analysts of survey data are most often confronted with a situation

where the data have already been collected. Sample size and the config-

uration of independent variables are given, and the researcher wishes to

test hypotheses of the parameters of a model on the given data set. In

such a situation the relevant power calculation is power as a function

of the degree to which the null hypothesis is false. From equation (8)

and Table 2 we see that the only additional information needed to compute

6
2
is a value for a2 or 0.2 Ich2. Should the researcher find that one

y.x Y. Y

or more tests are not powerful enough to detect substantively.meaningful

effects, two actions are possible. The researcher can increase a , low-

ering the protection against making a Type I error. If this is unaccep-

table, the researcher must simply conclude that the data are inadequate

for testing those particular hypotheses.

In Figure 6 we present power as a function of the degree to which

the null hypothesis is false for our example of the Ronferroni test of

the education coefficient in the income model. For fixed sample sizes

fram 250 to 10,000 observations, the power of the test of the hypothesis,

Ho : 82 = $2* is presented as a function of the absolute magnitude of the

standardized measure of the degree to which the null hypothesis is false,

11.11 .10

IR - R_*1_ With a samnZe size of 250. we see that the standardized effect
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would need to be-as large as .30 to be detected with any regularity

(power of .90), while for a sample of noon observations, an effect

as small as .07 can be detected with near certainty. To detect an

effect of .15, a researcher with a sample of 250 observations would

have to conclude that the data are inadequate, while a researcher with

a sample of 10,000 would be in danger of finding "trivial" effects

statistically significant and would perhaps decide to increase pro-

tection against Type I error substantially.

A single short Fortran computer program based on equation (8)

has allowed us to compute all of the power calculations presented in

this section. The logistics of these calculations are 81mp1e
14

and

could be routinely incorporated into regression or GLM computer packages.

If for no other reason than to force investigators to decide what

effects in the population they would find substantively important,

power considerations should be incorporated into our GLK hypothesis

testing procedures. It is our hope that by incorporating power and

simultaneous inference considerations into our hypothesis testing proce-

dures we can narrow the gap between "statistical significance" and

"substantive significance."

V. Conclusion

Classical hypothesis testing as presented in most texts in a two-

step procedure. One chooses a level of Type I error, a, and compares

the test statistic to a critical value based on that a. After review-

ing the neglected issues of simultaneous inference and power, we find



35

classical hypothesis testing inadequate for the purposes of social

research. The intelligent use of statistical inference demands

control over-the overall level of Type I error and knowledge of the
1;

magnitude of effects one is likely to detect. Our examination of

specific techniques for dealing with the power and simultaneous

inference problems have led us to conclude that these techniques

can be routinely inccrporated into our procedures for the statistical

analysis of survey data. Therefore, we suggest the following pro-

cedures precede the testing of GLM hypotheses:

1. Specify the hypotheses to be tested in terms of the param-
eters of the linear model.

2. Choose an acceptable Type I error rate, ac, for the group
of hypotheses.

3. Select the appropriate test statistics, Bonferroni or
Scheffe, which provide protection against Type I error
at the 1 - a

G
level.

4. Compute the noncentrality parameter,
2

, and power of the
tests as a function of the magnitude of the effects to be
detected.

The above steps will provide information such that meaningful decisions

can be made about the hypotheses being tested. This information may be

used in survey design for the rational choice of sample size, or for

assessing the adequacy of available data for hypothesis testing.

In recent years the use of statistical inference as a criteria in

scientific decision-uaking has been the subject of increasing criticism

(Morrison and Henkel, 1970). Pait of this criticism has been directed

at the failure of standard procedures of statistical inference to provide

the kind of information iequired for meaningful scientific decision-making.
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In apite of this criticism standard procedures of statistical inference

continue to be employed. The continued use of the standard procedures

can, at least in part, be attributed to the lack of a viable alternative

when survey samples are analyzed. The use of our alternative procedure

in our estimation, can contribute to a more informed use of statistical

inference in scientific decision-aaking. It does so by requiring that

the researcher give more attention to the goals of his research in the

use of statistical inference as a scientific decision-making aid. The

---, procedure we suggest requires that the researcher consider the purpose

of the research in the selection of a meaningful unit of error rate. It

also requires that the researcher give attention to the size of effect

believed to be substantively significant in judging the adequacy of a

given sample for decision-making purposes.
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NOTES

1The choice of saMPle size in a survey design is always subject to

cost constraints, and it is simPly impossible to take into consideration

the impact of sample size on all hypotheses which will be subsequently

tested on the data. With multivar iate sampling, it is impossible to

fir a priori the variation in each independent variable and the covaria-

tion among the indsPendent variables. Thus, even those analysts fortunate

enough to be involved in survey design have only limited control over

the power of their subsequent tests.

2
In models in vhieh an intercePt is specified, the first column of

X is a vector of ones, (1 1. . 1); and the first element of the 0

vector is the intereepf parameter. All models considered in this paper

will have.intercepts specified. Thus IC - 1 rather than X is the number

of independent variables.

3Th1s requirement is stronger than that of uncorrelatedness of E

and X; it is a weakez assumption than statistical independence of C and

X.

4
The null distribOtions-of GIS test statistics do not depend upon

the configuration ot the X Matrix, and consequently the conditional and

unconditional Type I efror rates are equivalent. The nonnull distribu-

tions of the GLM test statistics do depend upon the X matrix configura-

tion (see the expression for the noncentrality parameter presented below).

41
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By ignoring sampling variability in the X matrix , a source of vari-

ability in the nonnull distribution of the test statistics is being

ignored. Consequently,.the unconditional probability of Type II error

is underestimated. Unfortunately, the unconditional nonnull test

statistic distribution theory is quite complex, and incorporating it

into our presentation would take us out of the context of the classical

general linear model.

5
The matrix expression for the t-test of hypothesis (3) is merely

a' b a' 0* divided by the standard error of the linear combination a'_-

-
b, where the standard error is s

2
(L1 C X)

1
a).

6
Miller (1966) provides an exhaustive treatment of the statistical

'bases and applications of the many techniques of simultaneous statis-

tical inference. A less exhaustive and more applications-oriented review

is provided by Kirk (1968).

7
The case of "theory trimming" described here is qualitatively

different from the situation of testing an a priori hypothesized model.

A number of procedures have been proposed for testing the fit for an a

priori model where certain structural coefficients are hypothesized to

be equal to zero (Land, 1973; McPherson and Huang, 1974; Specht, 1975).

McPherson and Huang (1974) present an equation-by-equation scheme for

testing the fit of an hypothesized recursive structural equation model

that explicitly incorporates simultaneous inference considerations. If

a single test of the global fit of an hypothesized model is performed,

then one is effectively removed from the simultaneous inference case.

If a comparison of the fit of several models is performed (cf. Specht,

4 2
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1975), or if an attempt is made to diagnose what specific structural

parameters are responsible for the failure of an hypothesized model to

hold, then considerations raised in our discussion of simultaneous

inference issues again become relevant.

There are, of course, other techniques that are applicable to the

common hypotheses tests on slope coefficients. For example, Williams

(1972) discusses the application of Tukey's technique for making

pairwise multiple camparisons of means within the regression framework.

We restrict our attention to the Bonferroni and Scheffg techniques be-

cause of their wide generality and ease of application.

9Other factors such as departures from random sampling and measure-

ment error affect both Type I and Type II error rates. Again, we have

slighted important issues in order to remain within the context of the

classical general linear model as it is most often applied in research

by sociologists. Our point is not primarily that approximate error rate

calculations are better than none. A more fundamental point is that the

conceptualization of the appropriate unit of error rate and of meaning-

ful effects to be detected will enhance our understanding of what our

statistical analyses of survey data can and cannot tell us.

10Power tables approach an asymtope at about N - K = 100 denomin-

ator degrees of freedom. Since we are concerned with survey samples

with generally many more than 100 observations, our calculations are

based on tabled power for "infinite" denominator degrees of freedom.

43



40

11
It must be assumed here that the hypotheses being tested are

with respect to the unstandardized parameters and that the standard-

ized parameters are merely an arbitrary rescaling of their unstan-

dardized counterparts. The GLM distribution theory does not apply

to the direct estimation of standardized parameters. The distribu-

tions of the standardized estimates and test statistics_can become

quite complex. The application of such distributions to direct

statistical inference with respect to standardized parameters is

virtually nonexistent in the social survey literature.

12
An intermediate step is required to use these charts. They

are presented in terms of a parameter where =
8 / +. 1) '

where J is the numerator degrees of freedom of the test. For

Scheffg projections, J is the numerator degrees of freedom from the

preliminary joint test.

13
Note also that our value for 0

2
in 1960 was assumed to be based

on a census and therefore not subject to sampling variability. If this

were not the case, the power curves would be still lower.

14
While the calculations are simple, the intermediate step of

calculating the 0 parameter and finding power in the Pearson-Hartley

charts can be annoying. It would be much more convenient if charts

were available for power as a function of 6
2
directly (RS in Figure 1)

for a number of a levels and numerator degrees of freedom. The Pearson-

Hartley charts are further limited in that they have been tabulated only

for a = .01, .05.and .10.

44
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